Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sens Actuators A Phys ; 349: 114052, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2243732

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been garnered increasing for its rapid worldwide spread. Each country had implemented city-wide lockdowns and immigration regulations to prevent the spread of the infection, resulting in severe economic consequences. Materials and technologies that monitor environmental conditions and wirelessly communicate such information to people are thus gaining considerable attention as a countermeasure. This study investigated the dynamic characteristics of batteryless magnetostrictive alloys for energy harvesting to detect human coronavirus 229E (HCoV-229E). Light and thin magnetostrictive Fe-Co/Ni clad plate with rectification, direct current (DC) voltage storage capacitor, and wireless information transmission circuits were developed for this purpose. The power consumption was reduced by improving the energy storage circuit, and the magnetostrictive clad plate under bending vibration stored a DC voltage of 1.9 V and wirelessly transmitted a signal to a personal computer once every 5 min and 10 s under bias magnetic fields of 0 and 10 mT, respectively. Then, on the clad plate surface, a novel CD13 biorecognition layer was immobilized using a self-assembled monolayer of -COOH groups, thus forming an amide bond with -NH2 groups for the detection of HCoV-229E. A bending vibration test demonstrated the resonance frequency changes because of HCoV-229E binding. The fluorescence signal demonstrated that HCoV-229E could be successfully detected. Thus, because HCoV-229E changed the dynamic characteristics of this plate, the CD13-modified magnetostrictive clad plate could detect HCoV-229E from the interval of wireless communication time. Therefore, a monitoring system that transmits/detects the presence of human coronavirus without batteries will be realized soon.

2.
Advanced Materials Technologies ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-1940660

ABSTRACT

As society advances, the shift from passive medical care to health management and preventive medical care has become an important issue, with the realization of wearable monitors becoming desirable. In light of the COVID‐19 pandemic, the number of patients who are in urgent need of the monitoring of biological information is increasing. This review focuses on piezoelectric materials and composites that convert kinetic energy into electrical energy to realize self‐powered wearable monitoring sensors, outlining the recent research activity on sensors for use in healthcare monitoring. First, a general description of the principles of piezoelectric monitoring sensors is given. Next, the development status of piezoelectric materials and composites aimed at the application of detecting tiny motions of the human body is introduced, and then the research trends on the detection of larger human body movements are highlighted. Finally, after presenting the performance of current piezoelectric sensors and future research guidelines for developing multifunctional systems in the post COVID‐19 era, the achievements are summarized. Overall, this review will provide guidance to researchers who are seeking to design and develop highly sensitive self‐powered piezoelectric sensors that monitor human motion and physiological signals. [ FROM AUTHOR] Copyright of Advanced Materials Technologies is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Materials (Basel) ; 14(16)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1348666

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has spread rapidly around the world. In order to prevent the spread of infection, city blockades and immigration restrictions have been introduced in each country, but these measures have a severe serious impact on the economy. This paper examines the possibility of both harvesting vibration energy and detecting mass by using a magnetostrictive alloy. Few efforts have been made to develop new magnetostrictive biosensor materials. Therefore, we propose magnetostrictive Fe-Co/Ni clad steel vibration energy harvesters with mass detection, and we numerically and experimentally discuss the effect of the proof mass weight on the frequency shift and output voltage induced by bending vibration. The results reveal that the frequency and output voltage decrease significantly as the mass increases, indicating that the energy harvesting device is capable of mass detection. In the future, device miniaturization and the possibility of virus detection will be considered.

4.
Sens Actuators A Phys ; 327: 112742, 2021 Aug 15.
Article in English | MEDLINE | ID: covidwho-1172076

ABSTRACT

Undoubtedly, the coronavirus disease 2019 (COVID-19) has received the greatest concern with a global impact, and this situation will continue for a long period of time. Looking back in history, airborne transimission diseases have caused huge casualties several times. COVID-19 as a typical airborne disease caught our attention and reminded us of the importance of preventing such diseases. Therefore, this study focuses on finding a new way to guard against the spread of these diseases such as COVID-19. This paper studies the dynamic electromechanical response of metal-core piezoelectric fiber/epoxy matrix composites, designed as mass load sensors for virus detection, by numerical modelling. The dynamic electromechanical response is simulated by applying an alternating current (AC) electric field to make the composite vibrate. Furthermore, both concentrated and distributed loads are considered to assess the sensitivity of the biosensor during modelling of the combination of both biomarker and viruses. The design parameters of this sensor, such as the resonant frequency, the position and size of the biomarker, will be studied and optimized as the key values to determine the sensitivity of detection. The novelty of this work is to propose functional composites that can detect the viruses from changes of the output voltage instead of the resonant frequency change using piezoelectric sensor and piezoelectric actuator. The contribution of this detection method will significantly shorten the detection time as it avoids fast Fourier transform (FFT) or discrete Fourier transform (DFT). The outcome of this research offers a reliable numerical model to optimize the design of the proposed biosensor for virus detection, which will contribute to the production of high-performance piezoelectric biosensors in the future.

5.
Adv Mater ; 33(1): e2005448, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-959069

ABSTRACT

The spread of the severe acute respiratory syndrome coronavirus has changed the lives of people around the world with a huge impact on economies and societies. The development of wearable sensors that can continuously monitor the environment for viruses may become an important research area. Here, the state of the art of research on biosensor materials for virus detection is reviewed. A general description of the principles for virus detection is included, along with a critique of the experimental work dedicated to various virus sensors, and a summary of their detection limitations. The piezoelectric sensors used for the detection of human papilloma, vaccinia, dengue, Ebola, influenza A, human immunodeficiency, and hepatitis B viruses are examined in the first section; then the second part deals with magnetostrictive sensors for the detection of bacterial spores, proteins, and classical swine fever. In addition, progress related to early detection of COVID-19 (coronavirus disease 2019) is discussed in the final section, where remaining challenges in the field are also identified. It is believed that this review will guide material researchers in their future work of developing smart biosensors, which can further improve detection sensitivity in monitoring currently known and future virus threats.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Magnetics , Animals , Artificial Intelligence , Electric Conductivity , HIV Infections/diagnosis , Hemorrhagic Fever, Ebola/diagnosis , Hepatitis B/diagnosis , Humans , Influenza, Human/diagnosis , Papillomavirus Infections/diagnosis , Severe Dengue/diagnosis , Vaccinia/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL